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ABSTRACT 

In this paper, we report the direct observa,tion of wake-field self-focusing of 

an electron beam in plasma. The dynamics of beam self-pinching and the fast, 

collisionless evolution of a Bennett-like, near-equilibrium profile are examined 

t~heoretically and computationally. The experimental results are compared to 

predictions of the analysis, and discussed in the context of application to the 

plasma lens and the plasma wake-field accelerator. 
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1. Introduction 

In the Plasma Wake-field Accelerator,“m” (PWFA) charged particles are ac- 

celerated in the potentially ultra-high gradient fields supported by plasma waves 

driven in the wake of an intense particle beam. These wake-fields ca,n also be 

strongly focusing, ;$I and this fact has led to the proposal of employing plasma 

wa,ke-fields to create a powerful final focusing lens for use in a future linear e+t 

collider.‘6es’ This device has been termed a plasma lens, and can generate greater 

than MG/cm focusing gradients for typical linear collider parameters. In the 

course of the initial experimental investigations into the physical mechanisms 

of the PWFA at Argonne National Laborat~ory,“4’1’1 evidence for very strong 

self-focusing of the intense driving electron beam was accumulated. R.elevant 

observations included improved transmission of the driving beam through the fi- 

nal limiting aperture of the plasma source when plasmas was present, larger beam 

divergence of the driving beam as measured a,t the spectrometer focal plane down- 

stream of the plasma, and deflection of a secondary lower energy, low intensity 

‘witness’ beam by the driver’s transverse wake-fields in thr plasma. In addition, 

t,hr measurement of the accelerating wmke-fields yielded convincing indirect evi- 

dence of beam self-focusing, as at higher driving beam currents the wake-fields 

were enhanced in bot,h amplit,ude and in nonlinearity beyond nha,t was expected 

assuming the driring beam did not pinch, The degree of nonlinearity in the wake- 

fields provided an est,imate on the self-pinched driving beam radius; this estimate 

agreed well with what is calc&ted from the theory of pla~sma~ focusing.‘“’ 

Previous observations made during the PU’FA experiments at Argonne thus 

constitute an indirect case for the existence of plasma wake-field focusing and 

support for some of the predictions of the releva.nt theory. This is not a, sat- 

isfxtory state of &airs, however, as the theoretical estirrmtes of the observed 

degree of wake-field wave nonlinearity were based on a, rough synthesis of three- 

dimensional linear :51 and one-dimensional nonlinear “zm141 PWFA theories, which 

in total add up t,o a convincing plausibility argument. In order to make the expla- 
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nation of the observed phenomena in these experiment,s complete it is necessary 

to measure the actual self-pinched beam profiles in the plasma. In addition, 

the large volume of theoretical work done on pla,sma lenses t,o date, in which 

researchers have a,ttempt,ed to reliably predict the behavior of the these devices 

as focusing elements, demands experimental ralidat,ion. With these fact,ors as 

motivation, a set of measurements of the self-pinched beam profiles in p&ma, 

have been undertaken. The results of t,hese measurements are reported in this 

paper. 

It is necessary to provide in some detail the theoretical background for under- 

standing the processes involved in electron beam self-focusing in a plasma,. Thr 

discussion naturally breaks down into two distinct subjects, the plasma wake-field 

response the beam, and the subsequent, dynamics of the beam as it is influenced 

by these wake-fields. A review of previous work on the plasma response is pre- 

sented below, which is necessary for examining the effects of the beam profile and 

the plasma density on the form and st,rength of the focusing wake-fields. As in a 

certain limit these wake-fields become nearly independent of the plasma density 

and depend only on the beam profile, the self-consistent evolution of the beam is 

treated next. .4nalytical models of the self-pinch process are employed; laminar 

flow is assumed in calculating the initial focusing dynamics, and the I&xwell- 

Vlasov equation is utilized to discuss t.he asgmp,totic approxh t,o self-pinched 

Bennett, equilibrium. Computer simulations are shown to complement and cla,r- 

ify the conclusions of the analysis. After the theoretical context is established, 

t,he results of the experimental measurements are presented and compxed with 

the theory. The conclusions of the previous experiments are then reexamined in 

light of this new data. 



2. Linear Plasma Wake-field Theory 

The two-dimensional linear theory of plasma wake-fields, as formulated by 

P. Chen,‘“] provides a simple model for calculating expected focusing wake- 

fields in the present,ly relevant experimental regime. This theoretical treatment, 

which is described below, applies to a cold plasma with density perturbation 

small compared to the unperturbed electron density, and assumes an unchanging 

beam density profile. From the cold plasma fluid equations with the ions assumed 

stationary, a lineuized equation can be derived which describes small amplitude 

plasma elect,ron response driven by a relativistic electron beam. The equation 

can be written as 

d%, 
w + kin, = -k&g, 

where R,I = n-no is the deviation of the plasmaelectron densit,y from equilibrium 

density n,o, kp z &T/A, =: wpc = fi= is the pla.sma wave number, and nb is 

the beam density. The lineariz,ation of the equations requires that nl << no. 

If one assumes that the bea,m density distribution can be expressed in sepa- 

rable form as n,, = P&(T)g([), where P* is the maximum beam density, T is the 

mdial coordinate, and [ = z - ct is the longitudinal coordinate measured from 

the center of the bunch, the solution of Eq. (2.1) is given by”’ 

nl = -k,&(r) Ny(E’)sin(k:p(:’ - <))d<’ + --.&(~)G(li~[). 
J 

(2.2) 

E 

Note tha,t the pla,sma. charge density -enl has the same transverse dependence 

as the beam densit,y h(r). The longitudinal response, however, is described by 

G(lc,<), a. convolution integral over the beam density ahea,d of the point in ques- 

tion with the causal Green’s function solution to Eq. (2.1). If the beam is short 

compwed with t,he plasma wavelength, then the convolution integral is large be- 

hind the beam a.nd negligible inside of the beam. This corresponds physically to 

the impulse excitation of a large amplitude plasma wave in the beam’s wake with 
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very little plasma motion occuring inside the beam, which is desirable for plasma, 

wake-field acceleration. If the beam is not short compared to a plasma wavelength 

then the amplitude of the excited wave is smaller, as the plasma electrons have 

time to react to and partially neutralize the beam space charge density. In t,he 

limit that the longitudinal beam profile is smoothly varying and is long compared 

t,o a plasma wavelength, then G(lc,<) 2 --g(t), which implies 7~1 z -7~b. The 

beam can be nearly spxe charge neutralized, and very small amplitude plasma 

waves are driven in the beam’s wake. The beams employed in the present, ex- 

periments hare approximately cylindrically symmetric bi-Gaussian distributions, 

a,nd we can write OUT initial beam density as q, = pb exp (-T’/~LT: - t2/20z). If 

the beam is long, one expects n1 to also be bi-Gaussian, with small oscillations 

a.t the plasma frequency superimposed on this equilibrium configuration. It, can 

be seen from Eq. (2.2) that the amplitude of these oscilla.tions is approximately 

pt, exp [( ~- @,)‘/2], and thus vanish exponentially in the long beam limit. 

Once one knows the plasma response, the wake-fields can be found directly”’ 

or through solution of the wake potent,ial equations:” It is not, necessa,ry for 

present purposes to examine these solutions in deta,il; as in the regime of interest 

the calculation of the wake-fields simplifies considerably. If the beam is na.rrow 

compared to a, plasma wavelength (I;, 7 g < 1)) a condition nhichis approximat,ely 

satisfied in t,he experiments, then the plasma return current, which is localized 

within a disk of mdius of ‘c,-‘, flows mainly outside of the beam and the beam 

current density is not locally neutralized. Thus in a long, narrow beam satisfying 

Ic,u, < 1 < !~,a, the beam is charge, but not current neutralized, and the wake- 

fields reduce to the magnetic self-focusing fwces of the beam. -4s the beam is 

relativistic, these fields can be calculated trivially by using Gauss’ law. For the 

cylindrically symmetric case, the transverse wake-fields in this limit are given by 

r4; = -.4Xe2pbg(~)~~ ] h,($)d7J] 
cl 

(2.3) 

For non-uniform profiles this expression does not, yield linear focusing as in thr 
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case of a perfect lens, This effect gives rise to serious abermtions, one of the 

limitations of the plasma lens. The subject of aberrations and their effect on 

plasma lens performance has been examined extensively in the literature.‘6”“is’ 

3. Beam Dynamics: Initial Self-Pinch 

Much of the previous work on plasma lenses concerns the effect of a thin 

plasma lens on the transverse profile of a particle beam. In the present experi- 

ments, however, the plasma column is long compared to the focal length of the 

lens, and the beam dynamics are much more complex. In Ref. 6, there is a treat- 

ment of the problem of the thick lens correction to the thin lens which includes 

the effects of finite beam emittance and the raising of the focusing strength as 

the beam becomes more dense inside the lens (cf. Eq. (2.3)). This analysis is not 

strictly a.pplicable to the present case, and therefore a simpler approximation is 

chosen, t,hat of lamina,r flow of the beam particles. Since the transverse wake- 

fields felt by a particle depend only on the enclosed current, which is conserved 

in laminm flow, and on the mdius of the particle, each particle obeys an equation 

of motion for paraxial traject.ories derimble from a logarit,hmic potential, 

(3.1) 

where ’ indica,tes a deriva,tive with respect to distance of propa.gation t, and C(TO) 

is a. const,ant dependent on initial radius ~0. Near the center of a cylindrical 

Gaussian this constant is given by C(TO) z (v/r)(~/m~)*, where y is the Lorentz 

factor and we ha,vr introduced the Budker parameter v, which is the number of 

part,icles per unit, length measured in classical electron radii 7,. Integrating Eq. 

(3.1); the distance from the plasma, boundary t,o the first focus is calculated, 

s = +& ] pLE = TOT;?; 

0 

(3.2) 

For a Gzmssian initial profile one has s 2 gr m. In thesr experiments the 

number of particles per bunch is A’ = 3.2 x lOlo, the rms bunch length (T, 7 2.1 
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mm and 7 = 42, so the Budker parameter is v = 1.6 x lo-‘. The beam is thus 

expected to come to its initial focus s E 8 cm, which is well before the end of the 

plasma column of length L = 35 cm. 

It is difficult to analytically estimate the minimum pinched beam radius in 

the presence of aberrations and finite initial emittance, because the trmsverse 

profile of the beam changes so dranmtically as it focuses under the influence of 

nonlinear fields. This subject can be addressed most, straightforwardly by use 

of computer simulations. Computational treatments using a particle-in-cell code 

of this and related aspects of the self-pinching process will be presented below. 

Before proceeding to the computational work, an analytical model of the beam’s 

approach to equilibrium is explored. 

4. Beam Dynamics: Approach to Equilibrium 

The transverse phase space dynamics of the beam under the influence of 

its self-focusing magnetic fields can be calculated in principle from the Ma,xwell- 

Vlasov equations, the self-consistent combination of the Maxwell electromagnetic 

field equations and the Vlasov equation, which is written 

af 
z + (yme)-‘pi Or, f + F V,, f = 0. (4.1) 

Here f (rl, pL) is the beam’s transverse distribution function and F is the Lorentz 

force arising from the charge and current distribution under consideration. In 

this case t,he force is due to the transverse wake-fields given by Eq. (2.3), which 

depend on the distribution of the beam particles in configuration space:. 

At this point it can be remarked that, b ecausc of the large nonlinearities 

in t,hc radial focusing force and the c&As of the individual particles’ angular 

momentum, all particles have different effective betatron wave-numbers describ- 

ing the periodicity of their orbits. Thus the initial coherent self-focusing motion 

of a set of particles decoheres as the particles become out of phase with each 
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other, and the situa,tion is approached where the distribution in configumtion 

space becomes uncorrelated with the distribution in momentum space, i.e. the 

distribution seeks an equilibrium through collisionless or Landa.u damping. This 

approach to equilibrium through phase decohcrencr in the particle oscillations, 

whereby the coherent radial beam motion dissipates, was in fact initially sketched 

out by by Bennett in 1955, who t,ermed the effect ‘mixing. ’ “” This effect, is similar 

to a phenomenon, also refered to a,s decoherence, observed in the experiment,al 

study of nonlinear transverse dynamics in synchrotrons. ,161 

-4s a specific type of stationary distribution is of present interest,, the Maxwell- 

Vlasor equation is now written in cylindrincally symmetric equilibrium as 

Pr af ~-- + 1q.r af = 0. 
ym ar ?ap, 

and the distribution function is assumed separable in roordinat,e a,nd momrnt~um 

dependence, f(r,p,) = R(r)P(P,), b ecause of the decorrrlating effects of t,he non- 

linearities. This assumption will be validated later by our computer simulations. 

Upon substitution of the radial dependence of the magnetic self-force IV, 

from Eq. (2.3), and sepamtion of variables, one obt.ains the momentum equation 

iYP aPr p -_-- 
8Pr -/m ) 

where a is thr sepamtion constant,, and thr ra,dia,l equa,tion 

dR 

ar 
R(T’)T’&‘. 

0 

(4.3) 

The solution t,o the Eq. (4.3) IS, of course, a, Ga,ussian (thermal) distribution: 

p L 
II 

a.. 
27r-p f=P :-“P3/2-+ 

The solution to t,hr radial equation corresponding to this thermal equilibrium in 



momentum space is a Bennett prof11e”~’ which has the form 

R(T) ~- - 47) = r+ pp),)2j2 ’ (4.6) 

where a is the Bennett ra.dius. The usual expression for the Bennett radius relates 

it to the beam Debye length AD, with @ z 1, 

2kTL 2kTL 
a2 zz 8X$ z __ = -2 

dpt) vmc” 
, (4.7) 

which only specifics the relationship between the beam transverse temperature 

and current, not the radius, which cancels out of the equation. This uncertainty 

can be be removed by invoking an approxinmtr constraint on the asymptotic 

form of the distribution function. 

To derive this constraint, note that from the form of the self-fields of R cylin- 

drically symmetric beam and the associat,ed Maxwell-Vla~sor equation that the 

phase space density must be constant at (rl,pl~) = (O,O), a,s from Eq. (4.1) 

wc see tha.t af /at = 0 there. If one takes a,n original four-dimensional phase 

space densit,y corresponding to a cylindrically symmetric bi-Gaussian profile, and 

equates its initial value of f(O,O) to the final ralw of f(OIO) associated wit,h the 

Bennett equilibrium, the Bennett mdius is given by 

42 g_LL, 
YV 

where E, = ,@?c is the initial normalized rmittance. 

This argument, is not, strictly rigorous, however. Even though f(O,O) is a 

consta,nt of the motion, the form of the asymptotic sta,te that we have assumed 

is not completely correct,. It has been known for some t,ime that the Bennett, 

profile, being a stat,e in thermal equilibrium, cm evolve from a different initial 

state due t,o the thermalizing influence of multiple scattering of beam particles 

off the background plasma ions. ‘l” The distribution function can become smoot,h 
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during this collisional process and thus approach the equilibrium solution to 

the Maxwell-Vlasov equation, which is the product of two smooth functions, a 

Bennett mdial profile and Gaussian momentum profile. 

In the case of the collisionless damping, however, the near-equilibrium state 

evolves from the initial pinch by filrtmentation of the beam phase space as it, 

spirals under the influence of ibs own nonlinear self-fields. This filamentation 

process does not greatly affect the center of the disbribut,ion in phase space if the 

self-focusing forces there are nearly linear; which is the case for conditions not 

too far from equilibrium. This is because near equilibrium the small amplitude 

orbits in phase spxr are well behaved rotations about the fixed point of simple 

harmonic motion, (0,O). On the other hand, large amplitude orbits experience 

very nonlinear fields, and the filamentation is quite pronounced in these regions of 

phase space. Since the derimtion given above of the asymptotic Bennett radius 

is concerned with the final values of f(rl,p_) at or near (0,O): the fact tha,t 

the motion near this point is well behaved makes the argument,; which depends 

critically on approximation of the distribution a,s a smooth function at small 

amplitudes, quite accurate for ca.ses relatively close too equilibrium. 

If thp motion is not well behaved era for small amplitude particlrs, as ha,p- 

pens if t,he initial conditions are too far from equilibrium (e.g. a < ur), then the 

distribution function filaments near the origin in phase space, a.nd the approx- 

imat,ion of the actual distribution function as a product of smooth continuous 

functions is not as good. Filamentation at, small amplitudes thus causes t.he 

asymptotic Bennett radius to be larger, and we rrwrit,e Eq. (4.8) as an inrqual- 

ity, a 2 2c,/fi. In fact, other effects, such as a, deviation from the assumed 

initial cylindrical symmrtry~ spurious plasma, oscillations or nontrivial r&urn cur- 

rent drnsit,y inside the beam radius will serve to strengthen this inequality. All 

of these effects are present in experiments to somr extent. 

In thr limit of a,pplicable beam-plasma parameters, kpuz > 1 >> &,po7, some 

predictions cm be made concerning the outcome of experiments. In the present, 
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experiments the normalized emittance F, = 3 x 10m4 rad-m. Since the maximum 

in the beam current at t = 0 corresponds to a maximum Budker parameter of 

vg = 1.6 x lo-‘, the minimum Bennett radius predicted from the Vlasov analysis 

is no 2 0.72 mm. This pinching is not uniform along the length of the beam, 

as in the model it depends on the current at a given point in [$ a, fact that 

can be reflected by writing v(t) = ~oexp(-~~/2a~). One then has a([)-* = 

ai exp (-[/Zcrz), and the equilibrium density profile on axis is proportional to 

exp (-.$/vj): i.e. the bunch is effectively shortened on axis by a, factor of &. 

5. Beam Dynamics: Simulation 

In order to examine the deviations from the approximate theoret,ical trea,t- 

ments presented to this point, puticle-in-cell simulations of the beam motion 

have been performed. In these calculations, which employed a, modified rer- 

sion of the code EMMA,““’ written by Noble to calculate the related problem 

of emittance growt,h in a space-charge dominaied transport cha,nnel, cylindrical 

symmetry is assumed, longitudinal effects are ignored, and the wake-fields are 

calculated simply by using Eq. (2.3). The evolnt,ion of the beam distribut,ion at 

ox= point, in t can be quic,kly followed under these a,sumpt~ions. Some rrlrrant 

aspects of these computational results are presented here: which clarify the an- 

alyt,ical work and provide more concret,r predict,ions for t,hr experiment,al da,ta. 

These results are specialized in that the spurious effects of plasma oscillations 

are ignored in order to concentra,te on thr beam dynamics; fully electromag- 

netic 2&dimensional particle-in-cell simula~tions of beam self-focusing by plasma, 
‘91 ,191 

wa,ke-fields ha,ve been performed previously.’ 

To begin, we examine the evolution of the peak 1,ra.m density pb/pbo as it self- 

pinches, which is shown in Fig. 1. The longitudinal distzmces are given in units 

of kj’, where k. = m’a or 1s the initial small amplitude lxtatron waxnumber 

in the bea,m’s self-focusing wake-field. All parameters in the computations shown 

correspond to the strongest focusing experimental ca,se, in which a/u, = 0.51, 
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where the initial beam disribution function is Gaussian in moment~um and coor- 

dinate and the beam is at a waist. The initial pinching occurs in J.Y~s = 1.27, 

which is in excellent agreement with the value of kps = m 2 1.25 derived 

in Eq. (3.2). The peak beam density is approximately 20 times the initial peak 

density at this point; aft,er slight defocusing, it subsequently does not reach such 

large densities, but tends ra.pidly towards equilibrium. The maximum predicted 

equilibrium density associat,ed with a/o, = 0.51 is pb/pa = 2(u7,/a)’ = 7.85. It, 

appears that the equilibrium which develops is slightly less dense than this. 

The fluctuations in the peak density have nearly damped after kBz = 3, or 

one beam envelope oscillation, which is extremely quick. The degree t,o which the 

distribution function comes into equilibrium, i.e. approaches a, separable Bennett- 

coordinate/Gaussian-momentum form, can be quantified by examining the cor- 

relation parameter (~7’) /E?. Here F, = JFI--,-- (7 ) ((r ) , - (TT’)~) is the radial rms 

emittance. The evolution of this parameter is shown in Fig. 2. After initial 

large excursions associated with the first focus a,nd defocus, the correla.tions t,hen 

damp more slowly while oscillating with period kpX z 4. These oscillations do 

not, in la,rge pa,rt, reflect, oscillation of the core of t,hr beam, a,s these would have a 

period kgX = 2a(a/u,) z 3.2, and would show up also in Fig. 1. The correlations 

are instead due to the spiralling ‘arms’ of the dist,rihution, which occur at large 

amplitude and thus have a lower average wave-number. These spirals, which 

come into equilibrium more slowly than the beam core due to thr decrease in 

focusing strength with amplit,ude and thr la.rger initially empty regions of phase 

space wth which they must, mix, hwe been obserwd in the simula,tions; they are 

not shown in the interests of brevity. These resnlt,s support the conclusion that 

the pha,se spa,ce corr&tions in the bea,m core indeed dissipate quickly, after onr 

radial oscilla,tion; as is necessary to apply the results of the analysis a,bovc. 

It is nppa,rent from Fig. 1 tha,t the maximum bea,m density has st,a,bilizrd 

by kgz = 5, which corresponds to the length of the plasma column in these 

experiments. It is reassuring t,o plot the transverse profile of the beam density 

at this point, a,s is shown in Fig. 3, along with the Bennett profile from the 
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t,heoretical prediction of the Vlasov treatment. The calculat~ed profile is slightly 

less dense and has a marginally wider core than the minimum-mdius Bennett 

profile, indicating small effects due to phase space fila,ment~ation. 

Thus the simulations confirm the major conclusions of the analytical ap- 

proaches that ha,ve been developed, and give additional insight into t,he expected 

experimental results. The observation of core equilibration within kp = 3 al- 

lows use of the results of the Vlasov treatment to predict the self-pinched beam 

radius, as this equilibration length is shorter than the plasma column in the 

measurements, which we now described. 

6. Measurementz of Self-focused Bea,m Profiles in Pla,sma 

Experimental measurement of t,hr self-focused beam profiles a,t the end of a 

35 cm long, variable density ho11 ow cathode arc plasma column ‘lo1 has been per- 

formed in t,he same laboratory as previous PWF.4 investigations, the Argonne 

Advanced Accelerator Test Fxility W’ (AATF). A s no secondary beam ha,d t,o be 

created for t,hr purpose of probing the wa,ke-fields directly, the full intensity drir- 

ing beam was passed t,hrough the AATF into the experimental region occupied 

by the plasma source. To restate, the bean pulse delivered to thr plasma, scn~rce 

has t,hr following parameters; N 2 3.2 x 10” electrons, rms length nz 2 2.1 

mm transverse emittance c 2 7~ mm-mrnd, and my z 1.4 mm. This experiment 

used the video data aquisition and analysis capabilities of the AATF, a.s well the 

one-picosecond resolution streak camera. 

The streak camera is the basis of a diagnostic tha,t allows mrasuremcnt of 

the transverse profile of the beam as a function of longitudinal position in the 

beam. Physically, this scheme entails placing an opaque thin walled (to minimize 

multiple scattering effects) Cerenkov cell inside the anode, in direct contact with 

the downstrean end of the plasma column. The design of this cell is heavily 

constrained by the difficulty of survival of this relatively fragile device in such a 

hostile enrironment as inside of an arc electrode. The wall in contxt with the 

13 



plasma is 450 pm (.005 radiation lengths) f 1 0 a uminum at its narrowest region, a, 

horizontal slit on which the beam is vertically centered. The beam profile at this 

horizontal slit is converded to a photon profile by Cerenkor radiation due to t,he 

beam electrons’interaction with 2 mm of xenon gas at a,tmospheric pressure. The 

beam electrons and Cerenkov photons exit the cell through a synthetic quartz 

window. The photon profile is then transported through a telescopic optics sys- 

tem and focused onto the horizontal slit of the streak camera, giving a swept 

image that reflects the transverse profile of the beam in the horizontal direction 

versus time in vertical (streak) d’ Irection. The resolution of the profile obtained 

is 12 pm in the transverse dimension and 1 psec in time. 

The time-resolved pictures of the self-pinched transverse beam profile reveal 

a great deal about both the plasma and beam dynamics inwlvrd in the beam 

self-focusing. We show in Fig. 4 contour plots of the sireak camera picture of 

the spatially resolved bean intensity, where the vertical ais is time and the 

horizontal axis is thr transverse (radial) dimension. The plot in Fig. 4(b) is the 

profile with no plasma, and the plot in Fig. 4(a) h s ows the self-pinched profile in 

the case where the plasma densit,y no = 6.0 x lOI cmm3. In terms of the initial 

beam profile, this corresponds to a beam length in plasmas radians k,u, z 3, 

and is thus in the regime where the plasma, spa,ce charge neutralizes the beam 

and mngnet,ic self-focusing occurs. The dependence of the focusing strengt,h on 

enclosed current, density is apparent from the contour shapes. With no plasma 

present, the iso-int,ensity cont,ours are approximately elliptical: as exprct,ed for a 

beam with Ga,ussian profiles in both longitudinal a,nd transverse dimensions. The 

self-pinched profile, however, shows a transverse distribution which narrows no- 

t,iceably towards the longitudinal midplane. The self-pinched longit,udinal profile 

mea.sured near the propagation axis is also steepened and rffect,irely shortened in 

time. This phenomenon, which is explored in more detail below, is also qpxent 

from inspection of the contours near the transverse beam cent,er: as they also 

narrow noticeably near the current maximum. 

The plots in Fig. 5 shows the transverse cross-section (a projection of the 
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most intense 0.5 mm long transverse strip) of both the cases from Fig. 4. In the 

case of no plasma present shown in Fig. 5(b), we also show a best fit of the data, 

to a Gaussian of width cr = 1.4 mm, with a dashed line. With dense plasma 

present the self-pinched profile shown in Fig. 5(a) is obtained, with a best fit of 

the data, to a Bennett profile of radius a = 0.91 mm, indicated by the dashed line. 

The agreement in form is about as good as would be expected on the basis of the 

profile shown in Fig. 3. Recall that the minimum predicted Bennett radius for 

this case is aa = 0.72 mm. The experimentally measured value is larger by about 

25% due to the effects previously mentioned; the beam does not have perfect 

cylindrical symmetry initially, and deviations from this idea.1 undoubtedly allow 

more filament&on and effective dilution of the pha,se space density of the beam. 

In addit,ion, there are effects due to the plasma response; even in the high plasma 

density case considered here the product k,u, which result,s on axis after pinching 

(due to the effective pulse shortening described above) is about 2.2, which is just 

on the border of the a.diaba,tic regime of the plasma electron fluid motion where 

one an assume approximate charge neutraliza.tion of the bea,m. The focusing in 

the core of the beam ca,n be lowered by the response lag of the plasma elect,rons 

to t,he larger gradients in t,he beam charge density. 

The effects of varying the plasma, density have been explored, and these 

phenomena are illustrated in Figs. 6 and 7. The width (FWHM) of the beam 

intensity profiles: obtained from projection of the most int,ense 0.5 mm long 

transverse strip of the beam image, plotted as a. function of the plasma, density 

are shown in Fig. 6. The pinched beam profiles are not, as nwrow as the plasmas 

density is lowered past the condit,ion that the the beam is long compaed to a. 

plasma, wavelength. The focnsing forces do not depend on the enclosed current, 

but on the current ahead of the point in question by a phase difference of Ak,( CY 

a,‘2. Thus the most intense portion of the beam’s focusing is dependent on the 

less intense leading edge> and is therefore not focusrd as strongly, as can be seen 

from Fig. 6. At low enough plasma density (no < 1OJ3 cmm3, or kpui < 1.2), 

the focusing wake-fields are small inside of the beam, a,nd large only behind 
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the beam, resulting in the nearly complete degradation of the observed focusing 

in Fig. 6. In intermediate cases, the maximum in the beam intensity on-axis 

occurs after the current maximum. This is displa,yed in Fig. 7, which shoxvs 

the on-axis density profile obtained from projection of the most intense 0.2 mm 

wide longit,udinal strip of the bea.m image, plotted for four pla,sma, densities, 

no = 0.9,1.5,2.9 and 6.0 x lOI cmm3, using dashed, dot,ted, dot-dashed and solid 

lines, respectively. The peak in density moves ba,ck a,s predicted, by an a,mount 

slightly less than Ak& = n/Z. This is because the current, which the on-axis 

density is proportional to, falls towards the back of the beam. For low plasma 

densities this tends to lengt,hen the on-axis beam profile, but if kpr, > 1, or 

equivalently k,u, >> Akp(, the on-axis profile is effectively shortened, as predicted 

by ihe a,bove analysis of the asymptotic equilibrium profile. For the most dense 

case in Fig. 7, kpu, = 3.25, and therms length of the on-axis density profile is 1.6 

mm, in good agreement with the naive predict,ion given a,bove of 2.1/d = 1.5 

The final parametric dependence examined was the effect on the focusing of 

varying the number of particles in the beam. The beam intensity was lowered 

without changing the upstream optics by use of partially transmitting screens in 

the beam-line upstream of the .4ATF. In Fig. 8 the width (FWHM) of the heam 

profiles, obtained from projection of the most intensr 0.5 mm long transverse 

strip of the beam image, is plotted as a. function of the number of particles iV 

in t,he beam, while holding the plasma density at no = 2.9 x lOI cmm3. The 

beam widt,h decreases with increasing beam int,ensity, which is anticipat,ed from 

the theory, as t,he focusing strength is dependent on iV1iz. 
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7. Conclusions 

In these experiment,s, the self-pinched state of a beam in a plasma ha been 

observed. From theoretical and computational analysis, a model has been devel- 

oped of how this state develops through fast collisionless damping of the beam’s 

coherent motion. This damping is predicted to occur due to nonlinear focusing 

fields, after the beam has undergone an initial strong, coherent self-focus, and 

subsequent near-equilibra,tion inside the plasma, column. The experimental re- 

sults are in qualitative agreement with the analytical and computational models. 

Deviations from behavior predicted by the model which can br attributed to ef- 

fects of oscilla,tory plasma elect,ron response have been explored experimentally. 

These observed effects are explained adequately by the linear theory of plasma 

wake-fields. 

These experimental results have validated conclusions drawn from the non- 

linear PT+‘FA experiments, 
,,,! 

m that the unexpectedly high degree nonlinra,rit,y 

was attributed to two now directly observed effects of pla,sma xxke-field focus- 

ing enhancement of the peak density, and the effect~iw shortening of the beam 

profile on-axis, In addit,ion, the present experiments further strengthen empirical 

support for the theoretical models used in plasma, lens ca.lcula,tions. These inres- 

tigations concerned plasma focusing and equilibration of the self-pinched beam. 

Plasma lenses are more likely to be of interest in or near the t,hin lens limit, how- 

ever. The physical processes of beam focusing in this limit,, while less intricate 

and difficult to predict than in the regime present,ly considered, still await direct 

experimental investigation. In addition, even though the bea,ms hare been ob- 

served to become much denser inside the pla,sma, the plasma, response is still not 

too far from linear, as n* < no. An alt,erna.tive, a.nd in some ways mwe nttrxtive 

regime of plasma wake-field focusing is termed the underdense plasma lens. lb1 191 

In this scheme the beam is dense compared to the plasma, and the physics of the 

plasma response is qualitatively different. Demonst,ra,tion of plasma, focusing in 

this regime is planned for future experiments. 
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FIGURE CAPTIONS 

Figure 1. Peak calculated beam density pb/pbO as R function of koz, for initial condi- 

tion a/UT : 0.51. For minimum equilibrium Bennett mdius pb/pbo = 7.85. 

Figure 2. Calculated correlation para.mrt,er (~7’) /e, as a, function of kgz, for init,ial 

condidion u/u, = 0.51. 

Figure 3. Histogram of the calculated beam density at kpz = 5 (t,he end of the plasma, 

column in the experiments), for initial condition a/~~ z 0.51. Solid line is 

thr Bennett profile predict by the Vlasov trra,tment. 

Figure 4. Contour plots of the spa.tially resolved beam intensity? with x being t,he 

tra,nsverse (radial) coordinate and y the longitudinal (time) coordinate. 

(a) Beam density contour with plasma of density 7~, : 6.0 x lOI cmm3 

present, (b) No plasma present. 

Figure 5. Plots of t,hr transverse intensity profiles (a projection of t.he most intense 

0.5 mm long transverse strip) of th e contours in from Fig. 4. (a) With 

dense plasma, present - the self-pinched profile (solid line) with a best fit 



of the data to a Bennett profile of radius a = 0.91 mm (da.shed line). (b) 

With no plasma - the unpinched profile (solid line) with a best fit of the 

dais to a Gaussian profile of width gr = 1.4 mm (dashed linr). 

Figure 6. Width (FWHM) of th e intensity profiles obtained from projection of the 

most intense 0.5 mm long transverse strip of the beam image, plotted as a 

function of the plasma density. 

Figure 7. Longitudinal on-axis beam density profile obtained from projection of the 

most intense 0.2 mm wide longitudinal strip of the barn image, plotted 

for four plasma densities, 7~0 = 0.9,1.5,2.9 and 6.0 x lOI cm-3 (dashed, 

dotted, dot-dashed and solid lines, respectively. 

Figure 8. Width (FWHRI) of the intensity profiles obtained from projection of the 

most inknse 0.5 mmlong t,ransverse strip of the beam, plotted as a~function 

of the number of particles N in t,hr beam (7~0 = 2.9 x lOI cmm3 ). 
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